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 Can sentence structure and complexity be used to identify authors in 

dialogues between students and tutors?  Are there relationships between how an 

individual structures their sentences and their learning curve? 

 This thesis uses machine learning techniques and statistical analysis in two 

separate educational experiments.  In the first experiment we attempt to find 

relationships between students’ written essay responses to physics questions and 

their learning of the physics data.  To find these relationships, we used multiple types 

of sentence data such as noun phrases, verb phrases, and other aspects of student 

writings.   

 In the second experiment we attempt to find the same relationships as in the 

above physics experiment, but also attempt to do author identification and to find the 

relationships (if any) between the teachers’ linguistics and effectiveness.   

 Along with the aspects used in the physics experiment, we also used 

additional aspects like the Flesch Reading Ease test, and the percentage of domain 

words.  The processes we used to find these features include the C4.5 decision tree 



algorithm (WEKA’s implementation J48), the cluster algorithm KMeans (WEKA’s 

implementation SimpleKMeans), and a statistical method, Student’s t.   
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PREFACE 

 A man enters the office of a professional investigator with an electronic copy of 

a novel by an up and coming, but otherwise unknown, author.  This man has a 

suspicion that the author is not an unknown amateur author, but is in fact a well-

known and experienced wordsmith.  The investigator that he is meeting to consult 

with has a system that may possibly help this man determine if his suspicions are 

correct. 

 In another scenario, a university director is hoping to limit the acceptance of 

prospective students to those that he knows will show an aptitude for learning so as 

to keep their learning statistics at an all-time high.  This director has heard 

hypotheses that students who construct more complex sentences in their writings are 

also more likely to possess deeper learning skills. 

 In yet a third scenario it was conveyed to a concerned computer science 

professor that certain aspects of teaching improve education effectiveness.   Some of 

these aspects were as simple as asking more questions or more complex as 

dominating her dialogue with domain words.  She begins to wonder if she added 

some of these key aspects into her daily presentations, would her students gain more 

knowledge. 
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Down in the student chamber, a brave and intuitive masters student begins to 

speculate that the three previous scenarios could be combined into a single 

experiment.  He considers the value of using machine learning to combine all these 

key pieces to answer these issues to assist in better educating his fellow students 

and his knowledgeable professors.    Can it be completed? 

  



 
 

 
 

CHAPTER 1 

  INTRODUCTION 

 In this thesis we plan to show that the conspiracies in the preface are not just 

hypothetical scenarios, but are in fact problems that can be dissected, and possibly 

answered, with the help of machine learning techniques.  We will show the use of 

machine learning algorithms to explore patterns in various linguistic features and then 

also demonstrate any relationships between these hidden patterns.  To approach the 

many facets of these inquiries we have chosen to use multiple techniques and 

systems including the Stanford Parser, to break down all sentences to their basic 

parts, and the machine learning package WEKA, for its multiple machine learning 

algorithms.  We used two separate experiments to attempt to answer multiple 

questions in regards to author identification, sentence complexity, educational 

effectiveness and learning with the help of machine learning techniques.   

 The two separate experiments that are the focus of this thesis use data from 

previously completed experiments from two different sources.  The first experiment to 

be discussed utilizes data from physics essay problems answered by a large set of 

student volunteers engaging an intelligent tutoring system.  This portion of the 

composition largely concentrates on the use of a decision tree algorithm and 

statistical analysis to search for relationships within the complexities of student 
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writings and the educational determiners therein.  The second experiment within this 

thesis uses data in the form of dialogues between tutors and students.  The main 

focus of this section attempts to search for sentence complexity markers for use in 

attempting to identify the authors, or speakers.  This portion also attempts to use this 

information to find relationships between the educational techniques in speech and 

their corresponding educational effectiveness.  In both sections, machine learning 

algorithms are employed to help process the data from its raw form to its completed 

result.   

 



 
 

 
 

CHAPTER 2 

BACKGROUND 

Theoretical Background 

 Psychologists believe that interactivity and deep learning are two of the 

features that make teaching effective (Chi, 2009; Graesser, McNamara, and 

VanLehn, 2005).  Seeing as we cannot measure these features directly, we look at 

linguistic measures that are available.  For example we can measure such linguistic 

characteristics as domain vocabulary usage and the number of questions asked in a 

session, as aspects of deep learning. 

 Much of an individual’s learning style and understanding ability could be 

inherent in the way that individuals structure their sentences.  Between both sets of 

data there are some questions that we attempt to answer.  Some of these questions 

we endeavor to answer in both data sets.  Some other questions will be geared only 

towards a specific data set.  The following are a sample of the research questions 

that we will attempt to answer in this treatise. 

 
Research Questions for Physics Data Set 

 Question 1)   Is there a relationship between various linguistic features and 
  physics knowledge? 
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 Question 2)   Since students wrote multiple versions of each essay response 
  with tutoring in between, was there a significant difference in  
  essay complexity between initial and final essays? 

 
 Question 3) Did essay locale (first vs. last essay) determine essay  
   complexity? 
 
 Question 4) Does experiment type determine complexity? 

Research Questions for Biology Data Set 

 Question 1) Can basic linguistic complexity be used for author identification? 

 Question 2) If so, which linguistic features contribute more strongly to author 
    identification? 
 
 Question 3) Do more successful students . . . 
    use more domain words? 
    have longer sentences 
    have larger percentage/averages of SBARs? 
    have higher tree heights? 

   students utilize more words? 
    ask more questions? 
 
 Question 4) Do teachers that pose more questions elicit more understanding 

   from their students? 
 
 Question 5) Is there a relationship between a teacher’s linguistics and their 

   teaching ability? 
 
 Question 6) Is there a measurable linguistic difference between tutors? 
 
 Question 7) If there is a measurable linguistic difference, which features are 

  distinct? 
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Questions for both sets of data 

 Question 1) Does linguistic complexity determine learning? 

 Question 2) Do better students use more complicated data structures? 

 Question 3) Can machine learning techniques can help answer any of these 
   questions?   
 
 

NLP Background 

 In this thesis, the main scientific technique used under the broader umbrella of 

computer science is natural language processing, or NLP, and to continue with this 

paper, we must first establish the concept of natural language processing.   

 Natural language processing is the “computer understanding, analysis, 

manipulation, and/or generation of natural language.  This can refer to anything from 

fairly simple string-manipulation tasks like stemming, or building concordances of 

natural language texts, to higher-level AI-like tasks like processing user queries in 

natural language” (reference.com, n.d.).  More specifically it is “a field of computer 

science, artificial intelligence, and linguistics concerned with the interactions between 

computers and human (natural) languages.  As such, NLP is related to the area of 

human–computer interaction.  Many challenges in NLP involve natural language 

understanding, that is, enabling computers to derive meaning from human or natural 

language input, and others involve natural language generation” (wikipedia.org, n.d.).  
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In other words, as a wise mentor once described to me, “NLP is not the language 

structuring you learned in 4th grade.” 1 

 The use of NLP is what gives us our ability to dissect the sentences into 

detailed usable structures.  An example of a typical sentence processed in a NLP 

format is shown below with the sentence “The intelligent developer wrote the code.” 

 

 

Figure 1:  NLP Sentence Structure Example: 
 "The intelligent developer wrote the code” 

 

 As you can see in the inverted tree in Figure 1, a normal sentence can be 

broken down to its most basic features within NLP.  Though not restricted to 

language parsing (computer programming languages are broken down similarly), 

NLP is very helpful in finding these individual key components in the English 

language.   

                                                           
1 As heard in conversation with Dr. Reva Freedman 



7 
 

 A normal sentence is broken into multiple sub-phrases, for instance noun 

phrases and verb phrases.  A noun phrase is a section of a sentence formed by a 

noun (e.g. noun or pronoun) and all of its articles (determiners such as ‘the’) and 

modifiers (such as adjectives).  One such example (as in the Figure 1 above) is the 

noun phrase “the intelligent developer” which, in this case, has an article (or 

determiner) ‘the’, an adjective ‘intelligent’, and a noun ‘developer’.   

 Correspondingly, a verb phrase is a section of a sentence that is formed by a 

verb and all of its modifiers and auxiliaries, which are not part of the subject.  The 

verb phrase in this example has a verb ‘wrote’ and another noun phrase as its 

children.  The key point in a verb phrase is that modifiers and auxiliaries are only 

included in the verb phrase if it is not already a main part of a noun phrase.   

 Verb phrases and noun phrases are normal in every complete sentence, but to 

assist in measuring complexity another phrase structure should be explained.  

Subordinate clauses, or SBARs as used in the parser, are dependent clauses that 

require more information for the reader to complete the idea.  Subordinate clauses 

usually begin with a subordinating word and include a relative pronoun.  Tables 1 and 

2 lists examples of subordinating elements and relative pronouns.  Since subordinate 

clauses are more complex than normal sentences, these are good ways in helping to 

measure sentence complexity. 
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Table 1:  Subordinating Word Examples 

 

 

 

 

 

Table 2:  Relative Pronouns Examples 

That What Which 

Whichever Who Whoever 

Whom Whomever Whose 

 

 

 The sub-phrases can have multiple child phrases, including nested children 

(e.g. noun phrase within a noun phrase).  The phrasing is not limited to just noun 

phrases, verb phrases, and subordinate clauses, other such phrases are adjective 

phrases, adverb phrases, questions (SQs), prepositional phrase, conjunction 

phrases, fragments and others.  All levels in the sentence tree though always 

terminate to a part of speech such as a sentence terminator (e.g. a period or a 

question mark). 

 
 

Although Because Even though 

Since That Though 

Until Whether While 
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Stanford Parser 

 Among the natural language processing implementations available is the very 

powerful natural language parser, the Stanford Parser.  The Stanford Parser has 

been developed by the Stanford Natural Language Processing Group at Stanford 

University and is one of the most accurate and most recognized natural language 

parser in the linguistics community.  The Stanford Parse is a program that parses 

natural language into grammatical structures of sentences.  In other words, it 

attempts to break down sentences into their basic parts, from the sentence phrasing 

to the word structure or parts of speech of each word.  The Stanford Parser is a Java-

based program that is available publically and has been proven to be relatively 

reliable in parsing sentences. 

 This natural language processor is the program we have used for this thesis to 

compute the sentence complexities in these experiments.  As with the human NLP, 

one of the functions of the Stanford Parser is the ability to parse a sentence into a 

tree structure.  The Stanford Parser also tags each word in the sentence with its part 

of speech.  For their tagging the Stanford Natural Language Processing Group uses 

the Penn Treebank Project’s tags for each word (Santorini, 1995).  Table 3 below 

shows their word tags. 
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Table 3:  Stanford Parser's Parts of Speech Tag List 

Tag Tag Description  Tag Tag Description 

CC  Coordinating conjunction  PRP$  Possessive pronoun 

CD  Cardinal number  RB  Adverb 

DT  Determiner  RBR  Adverb, comparative 

EX  Existential there  RBS  Adverb, superlative 

FW  Foreign word  RP  Particle 

IN  Preposition or subordinating 
conjunction 

 SYM  Symbol 

JJ  Adjective  TO  to 

JJR  Adjective, comparative  UH  Interjection 

JJS  Adjective, superlative  VB  Verb, base form 

LS  List item marker  VBD  Verb, past tense 

MD  Modal  VBG  Verb, gerund or present participle 

NN  Noun, singular or mass  VBN  Verb, past participle 

NNS  Noun, plural  VBP  Verb, non-3rd person singular 
present 

NNP  Proper noun, singular  VBZ  Verb, 3rd person singular present 

NNPS  Proper noun, plural  WDT  Wh-determiner 

PDT  Predeterminer  WP  Wh-pronoun 

POS  Possessive ending  WP$  Possessive wh-pronoun 

PRP  Personal pronoun  WRB  Wh-adverb 
 

 

 Using the same sentence as the basic Natural Language Processing (NLP) 

example from Figure 1.  Figure 2 shows the output of the sentence from the Stanford 

Parser’s probabilistic lexicalized parser.  Some of the sentence complexity levels, or 

sentence phrases, given by the Stanford Parser are:  Root (the entire sentence), S 

(Simple Sentence), NP (Noun Phrase), VP (Verb Phrase), ADJP (Adjective Phrase), 

ADVP (Adverb Phrase), PP (Prepositional Phrase), FRAG (Fragmented Sentence), 

and CONJ (Conjunction Phrase).   
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Figure 2:  Stanford Parser Parsed Example:  
“The intelligent developer wrote the code”   

 

 Comparing Figure 1 and Figure 2, we can see that the Stanford Parser parses 

the example sentence in a similar but functionally equivalent way.  The main 

difference is the parts-of-speech-tag variation and the structure of the printout, 

though still in a tree form.  Even though the Stanford Parser will parse the parts of 

speech to specific types, such as multiple types of noun like plural nouns or mass 

nouns, in this paper we grouped all like types together.  For example there are six 

types of verbs: base, past tense, present participle, past participle, non-third person 

singular, and third-person present.  For our experiments we grouped all of these 

together as the ‘verb’ group.  The same process was used for all similar part of 

speech groups. 
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WEKA 

 

 To more readily use machine learning algorithms, we will be using a data 

mining package called Waikato Environment for Knowledge Analysis (Hall et al.,  

2009).  In particular we will be using WEKA 3:  Data Mining Software in Java.  WEKA 

contains a collection of many data mining algorithms for various types of data-mining 

tasks.  WEKA “is a comprehensive tool bench for machine learning and data mining.  

Its main strengths lie in the classification area, where all current [machine learning] 

approaches — and quite a few older ones — have been implemented within a clean, 

object-oriented Java class hierarchy.  Regression, Association Rules, and clustering 

algorithms have also been implemented.”  (Bouckaert et al., 2013)  Some of the 

specific algorithms that WEKA implements are J48 (C4.5), K-Means, Bayesian 

Logistic Regression, KStar and many others.  The ones we will be concentrating on 

in this thesis are J48 and K-Means. 

 WEKA offers both a command line access and a graphical user interface to 

their collection.  Though in this thesis we used mainly the command line interface, the 

GUI interface provides various graphing options and clarifies formatted textual output.  

Figures 3 and 4 show the output of one of the runs of WEKA’s implementation of 

C4.5 (which WEKA has named J48) on our physics data set.   
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Figure 3:  WEKA’s Pre-Processed GUI Example   
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Figure 4:  WEKA’s J48 Example:  Tutor Identification 
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J48 (C4.5) Algorithm 

 One of the machine learning algorithms employed in this study is the C4.5 

algorithm as implemented in WEKA as J48.  C4.5 is a statistical classifier developed 

by Ross Quinlan (1992) as a decision tree algorithm.  It is actually an extension of his 

earlier algorithm ID3.  Before a description of these algorithms can be discussed, a 

cursory explanation of decision trees should be given.  

 First used in 1964, decision trees are a potent tool for classifying and 

predicting data points from different sets of records.  The art of a decision tree can be 

classified as a decision making process where a node is represented by a Boolean 

test of a category.  For each node a decision is made as to the next branch to move 

down, until it reaches a terminal node, indicating the final decision/prediction.  

Figure 5 shows a graphical representation of a simple decision tree.   

 The C4.5/ID3/J48 algorithms allow a set of data with multiple categories, all of 

the same structure, to be used to determine a decision tree and predict the outcome 

from this decision tree.  These categories are attribute/value pairs with data to be 

used to attempt to correctly calculate the value of a final attribute/value pair.  This 

final category is normally a limited value set such as {‘rainy’, ‘cloudy’, ‘sunny’} or 

{‘true’, ‘false’}.  This last thought is one of the major benefits of using J48.  Where 

other similar decision tree algorithms restrict branches to only a true/false type 

decision, J48 does not have this limit.  J48 allows the use of a multitude of decision 

options.   Figure 5 shows a rendition of a decision tree for deciding whether or not to 

play baseball on a particular day depending on different weather characteristics.   
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Figure 5:  Decision Tree:  Whether or Not to Play Baseball 

 

 In Figure 5 there is a decision tree that has a height of four levels.  That is, at 

its deepest point, from the root of ‘outlook’ through the nodes, ‘rain’, ‘lightning’, 

‘overcast’, and ‘downpour’ children, there are four levels.  To use this tree we start at 

the top and answer the question “what is the outlook?”   If it is overcast, the decision 

is over and we play.  If the outlook answer instead is sunny, we check the 

temperature question.  If the temperature is within a safe range we play, otherwise 

we don’t play.  If however it is raining, we then check if it is lightning.  If there is 

lightning we terminate and don’t play.  If there is no lightning we trek further down the 

tree to see if there is a downpour and decide to play based on that node’s result.      
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 Referring back to Figure 4 and the WEKA J48 output example we can 

examine in detail the data it provides.  The first thing WEKA’s implementation of C4.5 

(which they call J48) shows after their headers is the pruned decision tree that it 

creates.  Based on the previous decision tree explanation, one can see that this tree 

has six levels and J48 is using all three of the input fields.  It even uses one of them 

in a nested form (CST_Perc_of_SBars is a child of Avg_Tree_Heights, which is a 

child of Avg_Tree_Heights, which is a child of CST_Perc_of_SBars).  Following the 

tree is the information we are most interested in, the summary of the results with 

accuracy ratings.  In this example the prediction accuracy of the J48 algorithm was 

57%.  J48 gives more than just an accuracy for the correctly classified instances in its 

reports of the computations.  The other statistics that J48 reports are Kappa 

Statistics, Mean Absolute Error, Root Mean Squared Error, Relative Absolute Error, 

and Root Relative Square Error.  These are defined in the following paragraph and 

Table 4. 

 Kappa Statistics is a measure of the degree to which two judges agree in their 

respective sorting of specified items into distinct categories.  Mean Absolute Error on 

the other hand is the weighted average used to measure how close the predictions 

are to their actual conclusions.  Root Mean Squared Error is a method of measuring 

the average magnitude of an error.  Relative Absolute Error is a technique of 

measuring how good the measurement is in relation to the object measurement.  

Finally Root Relative Squared Error is “relative to what it would have been if a simple 

predictor had been used. More specifically, this simple predictor is just the average of 
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the actual values. Thus, the relative squared error takes the total squared error and 

normalizes it by dividing by the total squared error of the simple predictor. By taking 

the square root of the relative squared error one reduces the error to the same 

dimensions as the quantity being predicted.” (gepsoft.com, n.d.) 

 

Table 4:  Statistic Definitions 

Statistic Definition 

Kappa Statistics Kappa Statistics is a measure to the degree in which two 
judges agree in their respective sorting of the items into 
the distinct categories.   

Mean Absolute Error Mean Absolute Error is the weighted average used to 
measure how close the predictions are to their actual 
conclusions.  

Root Mean Squared 
Error 

is a method of measuring the average magnitude of an 
error.   

Relative Absolute Error Relative Absolute Error is a technique of measuring how 
good the measurement is in relation to the object 
measurement.   

Root Relative Error Root Relative Squared Error is “relative to what it would 
have been if a simple predictor had been used. More 
specifically, this simple predictor is just the average of the 
actual values. Thus, the relative squared error takes the 
total squared error and normalizes it by dividing by the 
total squared error of the simple predictor. By taking the 
square root of the relative squared error one reduces the 
error to the same dimensions as the quantity being 
predicted.” (gepsoft.com, n.d.) 

 

 

 Aside from the previous five statistical measures that WEKA reports, there are 

several more details that are reported by J48.  This other pertinent information 
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follows the error statistics in the “Detailed Accuracy by Class” and are defined in the 

Table 5 with an example in Table 6.  

 

Table 5:  Accuracy Definitions 

Information Definition 

TP Rate True Positive Rate, the rate at which the instances were correctly 
categorized as a positive. 

FP Rate False Positive Rate, the rate at which the instances were 
incorrectly categorized as a positive.   

TN Rate True Negative Rate, the rate at which the instances were correctly 
categorized as a negative. 

FN Rate False Negative Rate, the rate at which the instances were 
incorrectly categorized as a negative. 

Precision Also referred to as positive predictive value, the percentage, or 
fraction, of the relevant instances correct. 

Recall Also referred to as sensitivity, the percentage, or fraction, of 
positive predictions caught.   

F-Measure This measure combines both precision and recall with a harmonic 
mean (complement of the arithmetic mean). 

ROC Area Relative Operating Characteristic, a more complex measure of the 
degree of discrimination. 
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Table 6:  Information Retrieval Example 

 If there were 1000 cases to predict a positive case or negative case, the 
following shows the previous definitions in action.  TN = True Negative;  FN = False 
Negative 
 

 Actual Positive 
Case 

Actual Negative 
Case 

Predicted Positive Case TP Rate:  400 FP Rate:  100 

Predicted Negative Case FN Rate:  200 TN Rate:  300 
 

Recall = Percent of positives caught = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
  = 

400

400+200
  = 66% 

 

Precision = Percent of positive predictions correct = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 = 

400

400+100
 = 80% 

 

 
 
 
 All of this information gives a summary of how the algorithm did in terms of 

accuracy in guessing the correct outcome.  In the previous example the three input 

features could only guess the single output element slightly more accurately than a 

coin flip, specifically 50% for a coin flip versus 57% for this example.   

 
Clustering (K-Means) 

 Decision tree algorithms are very useful in attempting to predict specific 

outcomes, but as an independent option we need another type of machine learning 

technique to show relationships in a different manner.  One such option is the 

machine learning technique of clustering.  Clustering is a technique that divides the 

categories, not into a branch and node set, but into similar groupings (Steinbach, 

Ertoz, & Kumar, 2004).  The idea behind clustering is to see if there are some 
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underlying related qualities that cause the data to be grouped together (Witten et al., 

2011).   

 The clustering algorithm that we used is the K-Means implementation in 

WEKA, named Simple-K-Means.  At the outset of K-Means, a specified, usually 

random, number of central points are used as initial focal points for the clusters.  

Each data item is then given a value representing its distance from the closest focal 

point.  The next step in the K-Means algorithm is to calculate the mean for all the 

current cluster groups.  These new values, gathered by the means, from which the 

algorithm gets its name, are the new focal points for each individual cluster group.  

The process of assigning the data to each group is iterated again with these new 

focal points.  When the same data are assigned to the same groups in consecutive 

iterations, then the process is complete and the clustered groups are in their final 

position.  This process gives a great way of showing relationships without having to 

assign a specific output to a prediction.  Figure 6 shows an example of clustering.  

The large black circle represents the scope of the data, and the inner circles 

represent the cluster group of each of the shapes. 

 



22 
 

 

Figure 6:  Visual Cluster Example 

 

Statistics and the T-Test 

 While the machine learning algorithms J48 and K-Means are very useful in 

showing specific accuracy or a significant cluster of the data, conventional statistical 

methods are still an effective way of showing some significant comparisons.  The 

two-tailed paired t-test is excellent for showing some type of variance between two 

sets of data, without caring which way the difference leans.  One example of using a 

two-tailed paired t-test is in the case of pharmaceutical studies where a group is 

comparing a blue pill to a red pill with the same group of subjects.  A two-tailed paired 

t-test shows only that there was or was not a significant difference between the two 

pills.  Specifically, it is useful in showing that there is a significant difference in either 

direction of a set of data.  On the other hand, the two-tailed unpaired t-test, while still 

only concerned about variances in either direction, is used with separate sets of data.   
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 In contrast to the two-tailed t-test, a one-tailed t-test only shows a significant 

difference in the specified direction one proposes.  In a one-tailed t-test, if the 

direction of the statistics is in the opposite direction than hypothesized, the result 

would not be significant.  Or more simply, one-tail answers the question, “is one 

better than two”, and two-tail answers the question, “are they different”.  The benefit 

to utilizing the t-Test formula is that it can use discrete values as input but it 

computes an output in a continuous form (e.g. a float).  

 We used the two-tailed paired t-test in the physics experiments to show the 

differences in the students’ data between their initial attempts and their final attempts.  

For the biology experiments we used the two-tailed unpaired t-test because the 

number of sessions each tutor participated in was not the same.  Dr. Michael tutored 

a total of 23 discussions while Dr. Rovick only presided in a total of 17.   

 
Related Work 

 There have been multiple research attempts that utilize many of the same 

ideas that this paper explores.  None of these associated attempts are implemented, 

to our knowledge, in the way in which we have approached it, nor with the types of 

techniques we are attempting.  There has been much related research in the fields of 

author identification, effective teaching practices, and machine learning. 

 Stylometrics, or the study of linguistics style, is one of the main techniques 

used for author identification and has a long history dating back to 1439 and the 

proof that the Donation of Constantine was a forgery.  There are several author 
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identification programs and methodologies in use today.  The earliest case of modern 

techniques of author identification in use was to help determine the authors of 

specific Federalist papers (Mosteller & Wallace, 1984).  Mosteller and Wallace used 

the frequency of words to determine the authors.  For example, one author of the 

Federalist Papers used “whilst”, while the other used the word “while” for the same 

context.  Another well-known author identification project was searching for the 

author of Primary Colors (Liptak, 2000).  For this project there were three focuses of 

attributes.  The first and primary, as with Foster and Wallace, was vocabulary; the 

second was punctuation, and the third was the unquantifiable attribute of “points of 

anxiety”.  The points of anxiety refer to the issues that the author was concerned 

with.   

 The most extensive author identification package so far is JGAAP, built by 

Patrick Juola, which is a Java based system that allows the user to choose among 

multiple algorithms (JGAAP, n.d.).   As Juola points out though: “. . . methods for 

authorship attribution are neither reliable . . . nor well-understood” (Juola, 2006).  

These systems, and other similar systems, only concentrate on evaluating writing 

styles and are used specifically for author identification.  These systems are not 

designed with education in mind.  They also do not use the results for purposes other 

than just authenticating authors.  Another difference that these previous systems 

have is that they also rely heavily on words, such as function words, while this paper 

relies heavily on lexical tags of sentences and types of words, not the words 

themselves.      
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 More recently, Patrick Juola has initiated some of the most recent and 

intensified research in this area.  In a more recent paper, he tests multiple author 

identification software against a common set of corpora.  The best of which, in a 

series of different types of known authorship questions, had a precision and recall of 

0.753 (Juola, 2013).  In Juola’s own author identification analysis program much of its 

process involves inspecting the authors’ individual words (Juola, 2004; Zhao, 2007).  

His program examines the most common bigrams and/or n-grams, the top 100 used 

words, frequently appearing clusters of words, and the distribution of word lengths 

(Sostek, 2013).  Even Juola’s system, thought by some to be in the forefront of the 

field, does not guarantee an identification, but only a highly educated probability.     

 Educational effectiveness is a technique that most successful educators strive 

to improve in their daily teaching routines.  Chi quotes Benjamin Franklin as saying 

“Tell me and I forget.  Teach me and I remember.  Involve me and I learn.”  One of 

the proposed inquiries into deep learning can be referred to as the interaction 

between teacher and student, specifically the amount of ‘action’, or participation of 

the student.   The participation of the student is a valid way of measuring the amount 

the student is involved.  One of the interactive characteristics that Chi provides in her 

paper is the proposed idea of “dialoging substantively on the same topic, and not 

ignoring a partner’s contributions”  (Chi, 2009).  In general an effective way of 

educating is forming a dialogue with a student and involving them in their own 

learning.  Quantifying effectiveness and interactivity are two points both Chi and this 

thesis attempt to address. 
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 The Support Vector Machine is a machine learning technology that is very 

similar to the experiments conducted in this research.  Using the support vector 

machine mechanism, Bullington, Endres and Rahman have experimented with 

classifying open-ended questions (2007).  To train and test their hypotheses, they 

cleaned their data set by removing punctuation, removing ‘stop words’ (e.g. a, and, 

the, etc.), and doing word stemming, which is the process of reducing a word to its 

root form (e.g. slyly to sly).  In the process of training the SVM for open-ended 

questions, the authors were hoping to train the system to look for keywords and 

phrases for the system to use in its assignment of question type.  This research 

reiterates the importance of questions in gathering information about individuals.  

 Earlier researchers have used machine learning to analyze the biology corpus 

that we used (Freedman et al., 2001; Freedman et al., 1998; Kim et al., 2006; Kim et 

al., 2000 ), but their work involved higher level discourse phenomena, as opposed to 

ours, which used word, phrase, and sentence level phenomena.  Similarly, other 

researchers have studied the physics corpus.  For example, Lipshultz et al. (2011) 

used machine learning to study high level discourse phenomena, while Rose et al. 

(2003) and Ai and Litman (2006) used statistical methods. 

 



 
 

CHAPTER 3 

PHYSICS 

Physics Background 

 This chapter of the thesis describes a continuing attempt to identify 

relationships between the linguistic complexities of students’ writing regarding 

answers to physics word problems and their ability to solve said problems.  It will 

attempt to dissect and use many different written complexity markers and how the 

markers relate to individual students’ understanding of the problems being answered.   

 In this paper, complexity is measured using simple linguistic elements and the 

more complex measures calculated from them.  Simple linguistic measures include 

the percent of nouns, verbs, adjectives and other parts of speech in the discourse 

compared to the total number of words used.  Measures of complexity include 

average sentence length, average tree height, percent of subordinate clauses and 

percent of certain types of verb phrases.  The metrics for measuring the students’ 

understanding of the problems are the use of pretest and posttest scores and 

normalized learning gain.  The normalized learning gain used in this process is 

defined as:   

𝑝𝑜𝑠𝑡𝑡𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑡𝑒𝑠𝑡

1 − 𝑝𝑟𝑒𝑡𝑒𝑠𝑡
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This study uses a set of 2217 files consisting of answers from the physics questions 

of the 91 recorded students involved in the study.  In addition to these files the 

pretest and posttest scores for these students are included.  We used the Stanford 

Parser to parse the files according to their parts of speech and sentence structure.  

We then used the C4.5 algorithm, as implemented in WEKA as J48, to test our 

hypotheses.  We follow these results with statistics by using a two-tailed t-test to find 

any statistical differences between data.      

 
Data Collection 

 The data used in this study were originally collected for testing ITSPOKE, a 

spoken dialogue intelligent tutoring system (ITS) that uses the facilities of the text-

based Why2-Atlas physics ITS.  In the ITSPOKE system, a student is given a 

qualitative problem in elementary college physics.  The student responds with an 

essay answer, then is coached using tutorial dialogue to improve the answer until it is 

judged acceptable.  In general, students revised their essays by adding a missing 

concept or revising an incorrect one.  Figure 7 shows a sample problem.  

 The data included essays from three experiments.  In each experiment, 

students who had never studied college physics worked through approximately five 

problems each with ITSPOKE, with a pretest before the first problem and a posttest 

after the last.  The first experiment, conducted in 2002-2003, used human tutors.  

The second experiment, conducted in Spring 2003, used a synthesized voice.  The 

third experiment, conducted in Fall 2005, had two branches, one with a synthesized 
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voice and one using text built from prerecorded voice snippets.  Students completed 

a pretest measuring their knowledge of physics before the first problem and a 

posttest after the last problem.  

 For this study we only used students who completed the entire experiment, 

including the posttest.  A few students were dropped for technical reasons, e.g., 

because the voice quality of the recordings was not sufficiently good.  There were 91 

students who did a total of 495 problems. (There were 11 different problems.)  The 

students wrote a total of 2217 essays, or about 4.5 essays per problem.  There were 

a total of 14524 sentences, or about 6.5 sentences per essay.  

 Figure 7 shows a sample problem, and Figure 8 shows an excerpt from a 

student essay written in response to this problem. 

 

Suppose that you released 3 identical balls of clay in a vacuum at exactly the 

same instant. Now you stick two of the balls together, forming one ball that is 

twice as heavy as the remaining, untouched clay ball.  Both balls are released 

in a vacuum at exactly the same instant.  Which ball hits the ground first?  

Figure 7:  Sample ITSPOKE:  Physics Problem 
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The balls of clay are released in a vacuum, therefore there is no air resistance 

present.  The only force determined is that of the earth's gravitational pull. 

This leads to the conclusion, because this is the only force acting upon the 

two objects, that both objects are in freefall.  Furthermore, because both 

objects have been released at the same time the rate of acceleration, 

represented by g will cause each to accelerate at the same rate and because 

the initial velocity was equal to zero.  

Figure 8:  Excerpt from Student Essay [from Essay 105-3-3] 

 

Data Preparation 

 To reduce the frequency of erroneous parses, we engaged in several forms of 

data cleaning.  We deleted extraneous punctuation and unprintable characters.  In 

some cases, the Stanford parser handled single letters at the end of a sentence 

incorrectly, for example, considering ‘a.’ at the end of a sentence as an abbreviation 

alone and not sentence-ending punctuation as well.  As a result, sentences ending in 

an equation such as f = m * a or m = f / a would be concatenated to the following 

sentence.  For this reason, we doubled single-letter variables in an equation, for 

example, a became aa.  

 Next, contractions were de-abbreviated.  For example, the Stanford parser 

treats the word “don’t” as two words, “do” and “n’t”.  Since words like this would 

increase the “do” count, but not the “not” count, this would in essence give “not” a 

count of about half its actual value.  To fix this issue, all instances of “n’t” were 

changed to “not” and equivalently for other contractions.  
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 Finally, we spell-corrected the corpus.  Spelling correction reduced the unique 

word count from the 2217 essays (247192 words) from about 2000 words to 1471.  In 

one extreme case, Table 7 contains 27 alternate spellings for acceleration, totaling 

130 instances. 

 

Table 7:  Alternate Spellings for ‘Acceleration’ 

accceleration  accelaration  accelaration  accelaraton  

accelation  acceleartion  acceleceration  acceleraction  

acceleraion  acceleratino  accelerationg  acceleratoin  

acceleraton  accelercation  acceletation  accelleration  

accelration  accelreation  acceration  accerlation  

accerleration  accleration  accleratioon  acelaration  

acieration  excellerarion  excelleration    

 

 

Feature Identification 

 We started by identifying 17 basic features divided into nine categories.  

1.   Experiment type 

 The data were collected from three experiments, comprising four cases.  As 

described above, the first had a human tutor and the second had a synthesized 

voice.  The third experiment had two arms, one with a synthesized voice and one that 

built responses from prerecorded snippets of human voices.  Experiment type is a 

feature that could lead to differentiation in learning (Ai & Litman, 2006). 
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2.  Essay locale 

 Students wrote between one and 16 essays per problem. Because of this 

large variation, it would be misleading to look at the absolute essay number. Instead, 

we labeled essays as the student’s first, middle or last attempt. If there was only one 

essay, we arbitrarily labeled it as an initial essay.  

 

3.   Average POS counts per essay – Noun, Adjective, Adverb, Preposition 

 We counted several categories of basic parts of speech, including nouns, 

verbs, adverbs and prepositions.  Since some essays were longer than others, all of 

our counts were normalized by dividing by the number of words in the essay.  

 

4.   Other constituent counts  – noun phrase(NP), adjective phrase(AdjP), adverb 
 phrase (AdvP), prepositional phrase (PP) 
 
 We also counted the number of noun phrases, adjective phrases, adverb 

phrases, and prepositional phrases.  

 

5.   Average words per sentence  

 We used several measures of writing complexity.  As in the Flesch readability 

formula (wikipedia.org, n.d.), we used the number of words per sentence as a simple 

measure of writing complexity.  This number was calculated at the essay level, i.e., 

the total number of words in the essay divided by the number of sentences.  
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6.   Average sentence tree height  

 Since the height of the parse tree is a rough measure of the amount of 

subordination in a sentence, we used the average height of the parse trees in a 

student essay as a second measure of essay complexity.  

 

7.  Average subordinate clauses per essay  

 As an additional measure of complexity, we used the average number of 

SBARs per essay, which modeled the number of subordinate clauses used by the 

student.  The Stanford parser generates an SBAR whenever a subordinating 

conjunction such as “that” is used.  This number was divided by the number of words 

in the essay.  

 

8.   Average “non-consecutive” VPs per essay  

 Nested verb phrases also increase complexity.  However, the Stanford parser 

adds an additional VP node for each auxiliary verb, so that a form like “the ball will 

have hit the ground” contains three VPs.  Since that seemed to overweight the 

difficulty level of generating verb forms with multiple auxiliaries, we only counted VPs 

whose parent was not a VP.  Again, this number was divided by the number of words 

in the essay.  
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9.   Student educational data – pretest, posttest, learning gain  

 Pretest and posttest scores were available at the student level, i.e., the 

student took the pretest before their first problem and the posttest after their last.  

The pretest and posttest scores are expressed as the percent of correct answers.  

Normalized learning gain was defined in the conventional manner as the student’s 

improvement with respect to questions missed on the pretest, i.e.,  

(posttest - pretest)/(1 - pretest).  The normalized learning gain has a value between -

1 and 1. 

 
Compound Features 

 With the exception of experiment type, all of the basic 17 features are numeric. 

In addition to treating each feature as a number, for each input feature n we also 

created a variant log2n to reduce the influence of large values, such as extremely 

long sentences. For each of the two versions, we also created a discrete version in 

which we assigned the data to 10 equal-width bins. In this thesis we show the results 

from the numeric version; the others were not significantly different.  

 We created two versions of each output feature. One version used a median 

split and the other a quartile split. To give the best possible results, in this thesis we 

show the results from the median split.  On average, the results from the quartile split 

were about 20 percentage points less.  

 



 
 

CHAPTER 4 

BIOLOGY 

Biology Background 

 Michelene Chi, director of the Learning Sciences Institute of Arizona State 

University, has done extensive research showing that deep learning is one of the 

most important features in student learning (Chi, 2009).  Kurt VanLehn, co-founder of 

two of the most successful NSF-funded centers for the study of the learning sciences, 

has written extensively on the importance of interactivity (2011).  Danielle McNamara 

and Art Graesser, respectively the current and former directors of another such 

center at the University of Memphis, have also written extensively on this topic as 

well as on the importance of deep learning (Graesser, McNamara & VanLehn, 2005; 

Graesser et al., 2001). 

 Teaching styles and learning styles vary greatly between different 

geographical areas, between educational subjects, and even between like-minded 

teachers and students.   Some teach with a grandiose vocabulary, some ask many 

questions of their students, and some are short and to the point.  Everyone has their 

own way of explaining themselves, i.e., everyone has their own variation on a 

teaching style.  For this portion of the thesis we built upon the elements from the 
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physics experiment and added more elements in an attempt to gather more accurate 

results.  One such element is the ability to gain the identity of a specific professor  

within a dialogue.   

 
Author ID 

 Identifying a professor is a beginning step in helping to differentiate teaching 

styles in a virtual environment.  From here we can explore relationships between 

these styles and their effectiveness with a student or in the classroom.  Although 

earlier researchers used statistical approaches based on vocabulary choice and 

frequency for author identification, we use data mining algorithms, starting with the 

algorithmic work of Quinlan (1992).  Aside from the C4.5 algorithm and the statistical 

t-test we used in the previous portion of our experiment, in this part we will also use 

the unsupervised algorithm K-Means.  Whereas many others have attempted author 

identification using mainly the vocabulary of the writer, we are attempting to identify 

the speaker beyond the use of just vocabulary.  Still using the parts of speech, 

grammatical phrasing, and other sentence breakdowns as in the physics 

experiments, we also use other key writing and speaking elements to find author 

identification and other relationships.  Some of the other key aspects we use are 

readability tests, such as the Flesch Reading Ease, the Coleman-Liau Index, and the 

Automated Readability Index (ARI) and the use of domain words.   
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Readability Formulae 

 Readability tests are metrics for evaluating the readability of a set of texts, 

such as a full document or something as small as a sentence.  They are designed to 

indicate the comprehension level needed to understand a passage written in English.  

Most everyone always writes in their own style, using the same types of words and 

the same types of sentence patterns.  Due to this fact, the readability tests are 

another excellent way in using speech and writing styles as another element in our 

experiments.   

 There are multiple valid and usable readability tests which anyone can use for 

computing the readability of a document.  For these experiments we chose three 

separate readability formulae to get multiple readability scores for each individual 

passage.  The three we chose were the Flesch Reading Ease Test, the Coleman-

Liau Index, and the Automated Readability Index (ARI).  Each of these three 

readability assessments has their own, mostly unique, formula for dictating their 

results.  The Flesch Reading Ease formula is:   

206.835 − (1.015 ∗
𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) − (84.6 ∗

𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠
) 

 

and gives a result in the range of 0 – 100, where a lower number represents a higher 

comprehension level required for the reader to understand the passage.  For 

example, the Flesch Reading Ease score of this paragraph is 34.0 which is best 

understood by university graduates.  The formula for the Coleman-Liau Index is: 
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5.89 ∗
𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠
− 0.29 ∗

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠
− 15.8 

 

and returns a result of the grade level needed to understand the passage.  A 

variation of the Flesch Reading Ease formula, Coleman uses the number of 

characters in a segment per 100 words instead of the number of syllables.  The 

Coleman-Liau Index of this section is 15.11 which corresponds directly to the 

American grade level needed to understand this passage, in this case an upper 

undergraduate student.  Similar to the Coleman-Liau Index, the Automated 

Readability Index also uses characters, but has a slightly different formula.  The ARI 

formula is: 

4.71 ∗
𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠
+ 0.5 ∗

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
− 21.43 

 

Like the Coleman-Liau Index, the Automated Readability Index returns a value that 

approximates the American grade level needed to comprehend the text.  As such the 

ARI of this section is 13.44, indicating that a student of at least an undergraduate 

level would be needed to understand this paragraph.   

 
Data Collection 

 The data to be used in this thesis is derived from a corpus collected by the 

Circsim-Tutor project.  The Circsim-Tutor project (Evens and Michael, 2006; 

Freedman et al, 2001; Freedman et al., 2004; Circsim-Tutor, n.d.) built a language-
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based intelligent tutoring system for first-year medical students to learn about reflex 

control of blood pressure.  This project was one of the first attempting to characterize 

human tutoring language and behavior and to adapt it for computer use (Kim, 

Freedman, Glass, & Evens 2006).  The data from this project consists of transcripts 

of tutoring sessions between two of the founders, Dr. Joel Michael and the late Dr. 

Allen Rovick of Rush Medical College, and their students, on a one-on-one basis.   

 Some of these transcripts were collected in a face-to-face session; others are 

of the teacher and student communicating using a computer in an instant-messaging 

style.  This data has communications between the two professors and over thirty 

students, totaling over 100,000 words, or the equivalent of a 400-page book when 

printed.  The information housed within these transcripts has also been annotated 

with the results (correct / incorrect) for each step of the problems that the students 

are attempting to solve.  Using these results, we attempt to correlate the linguistic 

features with their teaching effectiveness.   

 
Data Preparation 

 As with the physics data, before any of the experiments could be conducted, a 

great deal of data cleanup and preparation had to be executed.  This also reduced 

the frequency of erroneous parses by the Stanford Parser.  Like the physics data, 

there were many incorrect spellings, issues with contractions, formulae, and many 

other types of linguistic objects to be fixed.  To combat the erroneous parses we 

closely followed the same process we used in cleaning the physics data.  Due to the 
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fact that much of the biology data contains different wordage and was written as 

dialogues, there was some more specific cleaning that also needed to be done to the 

files.   

 In view of the fact that many of the biology files were either transcriptions of a 

dialogue or were actual typed dialogues between the tutor and student, there were a 

great many abbreviations used.  Many of these abbreviations were valid English 

words, such as IS, so these, as with the physics equations, had to be addressed.  

Most of the other abbreviations were medical terms associated with the topics 

covered in these dialogues.  Figure 9 shows a sample of a dialogue before cleaning 

and Figure 10 shows the same dialogue sample after cleaning.  Table 8 we show an 

excerpt of the abbreviations used by the tutors and students and the subsequent 

change needed to guarantee correct parsing.  By shifting these to the complete term, 

it also increased the accuracy of the unique word count for each of these individual 

words. 

 

K24-tu-042-01: Good thinking (but be careful about this notion of "backed 
   up"). 
K24-tu-042-02: Why did you predict that CC and TPR were both 0? 
K24-st-043-01: CC does not change b/c there is no change in the sympathetic 
   innervation on the heart w/ the change in the  
   pacemaker. 
K24-st-043-02: TPR does not change b/c of the same reason. 
K24-tu-044-01: Another way of saying this is that both CC and TPR are  
   determined by the reflex and the reflex hasn't  
   happened yet in DR. 

Figure 9:  Sample from CIRCSIM Tutor Transcript - Original [K24] 
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Table 8:  Biology Acronym Expansion 

Original Post-Processed  Original Post-Processed 

TPR Total Peripheral Resistance  CO Cardiac Output 

RAP  Right Arterial Pressure  LAP Left Arterial Pressure  

MAP Mean Arterial Pressure  SV Stroke Volume 

CVP Central Venous Pressure  DR Direct Response 

CNS / CNX Central Nervous System  RR Reflex Response 

ANS Autonomic Nervous System  RA Right Atrium 

CBV Central Blood Volume  SS Steady State 

IS Inotropic State  LV Left Ventricle 

RV Right Ventricle  BV Blood Volume 

CV Cardiac Volume  BP Baroreceptor Pressure 

EDV End-Diastolic Volume  EDP End-Diastolic Pressure 

CC Cardiac Contractility  HR Heart Rate 

 
 

K24-tu-042-01: Good thinking (but be careful about this notion of "backed 
   up"). 
K24-tu-042-02: Why did you predict that Cardiac Contractility and Total  
   Peripheral Resistance were both no change? 
K24-st-043-01: Cardiac Contractility does not change because there is no  
   change in the sympathetic innervation on the heart 
   with the change in the pacemaker. 
K24-st-043-02: Total Peripheral Resistance does not change because of the 
   same reason. 
K24-tu-044-01: Another way of saying this is that both Cardiac Contractility 
  and Total Peripheral Resistance are determined by the reflex 
  and the reflex hasn't happened yet in Direct Response.  

Figure 10:  Sample from CIRCSIM Tutor Transcript - Cleaned [K24] 

 

 Finally, as with the physics data, we spell-corrected the corpus.    Spelling 

correction, abbreviation expansion, and other corrections reduced the unique word 

count in the 51 separate dialogues of roughly 100,000 words from about 3000 words 
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to 2645.  Because these are dialogues we were able to split the statistics by speaker 

role into tutor versus student.  The tutors spoke/wrote 58,582 words with a total of 

2092 unique words, while the students totaled 31,705 words with a total of only 1731 

unique words.  To further divide the tutor numbers we can break it down to each 

tutor.  Dr. Michael participated in 23 interactions, speaking/writing a total of 29,844 

words with 1438 unique words.  Dr. Rovick participated in 17 interactions and 

spoke/wrote a total of 20,819 words with 1,353 unique words.  

 
Feature Identification 

 The biology data gave us a different set of features to use for our experiments.  

Though we were able to use much of the same in terms of parts of speech and 

sentence structure there were other features we added into the biology experiment. 

 The features were divided into the following categories. 

1. Session Type 

 The data from the biology experiment was split into two separate types of 

data.  The first case was transcriptions of the student and tutor’s spoken dialogue.  

The second case was an instant messaging set up with everything they typed being 

recorded into a file. 

 

2. Speaker 

 Since this was a dialogue, either the tutor or the student could be 

speaking/writing the passage recorded.     
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3. Tutor / Student Name 

 There were multiple tutors and multiple students so there needed to be a way 

of distinguishing them.  Knowing these names helped in two separate instances, one 

being as a way to show effectiveness and the other to identify the authors.  To 

protect the students, the students were only referred to by their initials.    

 

4. Tutor/Student Speech Ratio 

 One of the possible ways of distinguishing tutors and possibly showing 

teaching effectiveness was to show how much of a conversation was dominated by 

the tutor.  We divided the total number of words the tutor used against the total words 

of the entire dialogue. 

 

5. Readability Formula 

 This included the three separate readability formulae used in this portion of the 

experiment.  As described above they included the Flesch Reading Ease, The Cole-

Liau Index, and the Automated Readability Index or ARI. 

 

6. Domain Word Usage 

 We counted the use of biology specific domain words used by either tutor or 

student within a dialogue.  This allowed us to use the normalized percentage per 

sentence or normalized average per 100 words use of the domain words per 
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individual.  We obtain the domain words by the project medical words accessible at 

medicalwords.sourceforge.net.   

 

7. Unique Word 

 We kept track of the use of unique word per individual to be able to 

differentiate the vocabulary usage by each individual and to use the normalized 

percentage per sentence and normalized average per 100 words of unique words.         

 

8. Turn Statistics 

 With the data coming from dialogues, we were able to keep track of the 

number of turns each individual had.  A turn is whenever a new individual begins to 

speak.  We were able to collect data such as the average number of sentences per 

turn and the average number of words per turn. 

 

9. Student Educational Data – Student’s Final Grade 

 At the student level there were grades available for all the students.  These 

grades were figured based on answers they provided during the original experiment.  

There were seven questions regarding medical knowledge they discussed in the 

course of the dialogues.  The grades were simply the number correct over the total 

possible and stored as a percentage.   
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Features 10 through 15 corresponded to the same features described in the physics 

chapter. 

10. Average POS Counts per Dialogue – Noun, Adjective, Adverb, Preposition 

11. Other Constituent Counts  – Noun Phrase(NP), Adjective Phrase(AdjP), 
 Adverb Phrase (AdvP), Prepositional Phrase (PP)  
 
12. Average Words per Sentence  

13. Average Sentence Tree Height  

14. Average Subordinate Clauses per Essay  

15. Average “Non-Consecutive” VPs per Essay  

 

Compound Features 

 With the exception of session type, speaker, and tutor/student name all of the 

other features were numeric.  As with the physics data we added an additional input 

feature for each element, the variant log2n to reduce the influences of larger values.  

We also used a binning technique to separate the data into 10 equal-width bins. 

 In addition to the binning technique we created multiple versions of each 

output feature when the numeric elements were used.  The two versions created 

used a median split, where all data was given a high or low tag, and a quartile split, 

where the data was split into four quarters.  Most of the numeric results are shown 

using the median split.    



 
 

CHAPTER 5 

METHODOLOGY 

Python Coding Introduction 

 The majority of the experiments were processed using Python programming 

code for everything from the data cleanup, processing the cleaned data into the 

format and file structure that the Stanford Parser could understand, processing the 

results of the parser, getting these results into a format that WEKA could use, and 

finally reading the final results.  Most of these phases required multiple iterations to 

get the data to a usable format.  This chapter describes the Python code used to 

generate the final usable data, retrieve data returned from the Stanford Parser, and 

input and retrieve data from WEKA.  Figure 11 shows the basic menu options that 

allowed us to run multiple iterations of cleaning and running of the data. 
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Figure 11:  Main Program Screen Shot - Main Menu 

 
 

Preprocessing, the Art of Cleaning Files 

 Unfortunately data in its raw form is rarely in a completely computer legible 

format.  For both the physics portion and the biology portion a generous amount of 

file cleanup was required before more processing could be completed.  Due to the 

magnitude of both sets of data, knowing all of the needed changes on a first pass 

was impossible.  For this reason we needed to make multiple passes on the cleanup 

adding needed changes each time.  To help us find the oddball elements, one of the 

first things we did was to create a program that would process each file, and gather 

all the unique words and their number of occurrences.  This data was then written to 

a text file for further analysis.   Once this was created, we could then use another 

method to go through and find words that were incorrectly spelled, and in some 
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cases completely incorrectly used.  After creating a list of all misspelled and correctly 

spelled words, we were able to write a program to go through and change all the 

misspelled words to their correctly spelled cousins.  We did all of this correcting 

because we wanted all data to be consistent to guarantee a reliable set of statistics.  

Also for our purposes we were not concerned with the actual words themselves, but 

their role as parts of speech.  The fact that many of the physics students misspelled 

‘acceleration’ was not pertinent to us, just the idea that, for our purposes, that 

‘acceleration’ was a noun (not a verb). 

 For the majority of the cleanup the main focus and methodology utilized 

regular expressions and substitutions.  As stated in the physics chapter, we needed 

to change certain letters and words so that the Stanford Parser would correctly parse 

the words to their corresponding part of speech.  So with the use of a program mainly 

using regular expressions we were able to correct a vast majority of the misspelled 

words, change contractions to their full-paired words, remove punctuation that was 

unnecessary for the parsing or statistics, expand abbreviations, and generate other 

substitutions.  In Table 9 we show examples of the majority of the changes made to 

the files for both the physics and the biology data.   
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Table 9:  File Cleaning Examples 

Original Cleaned  Original Cleaned 

acceleration.the acceleration.  the  ‘m Am 

amt amount  n’t Not 

carin car in  a. Aa 

Find truck., find truck  b/c because 

 

 

Preparing for the Parser  

 The Stanford Parser is written in the Java programming language and is open 

for anyone willing to download it to use.  Luckily, Python allows the use of 

implementing the Java Virtual Machine in a few different ways within its API.  In our 

programs we use two of these processes to access the Java run methods.  In the 

case of the Stanford Parser, the use of Python’s system call was enough to run the 

basic code.  Though not the most efficient due to the fact that for each call, the JVM 

had to be started, loaded, and then run, it was adequate for our needs.  Once all the 

cleanup was completed, we made sure all the files were in a consistent format so that 

there was no chance of the parser parsing one differently than another due to a 

minor format difference.  The code of this portion of the program was very simple but 

powerful.  The free software allows one to feed a text file with the sentences to be 

parsed and can provide an output to another text file with the parsed information.  

With this in mind we were able to feed the now cleaned files to the parser and get an 

equal number of files back in the parsed arrangement.  The form we used was the 
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parser’s tree form, seeing as it is easier to extrapolate all the needed data from each 

tree.   

 
Tree Climbing and Preparing for WEKA 

 Using the Stanford Parser showed that there were still some random word 

issues within the files.  Some of these issues were such that we needed to correct 

them so that we could gather accurate data.  An example of this was where some 

words had  a dot in the middle (see Table 9).  Within our post-parser processing we 

needed to handle these abnormal renditions.  These extra functions included 

removing punctuation within a word, so as not to alter counts, gathering a set of 

unique words, placing everything into separate lists, applying many different 

statistical methods, and collecting all statistical elements.  

 The Stanford Parser’s Lexicalized Tree Parser was used to gather data from 

the parser.  The Stanford Parser’s Lexicalized Tree Parser returned a sentence tree 

with all the sentence phrases and parts of speech in one file.  The main function for 

processing the parsed files was a tree-traversing method that not only gathered the 

individual words and their corresponding parts of speech, but also collected all the 

sentence phrases.  From this point we were able to create multiple statistical 

collectors to gather the individual figures we needed.   

 One of the main duties of this step of the program, aside from gathering all the 

pertinent data, is to get the data ready to be processed by WEKA.  Rather than use 

WEKA’s way of converting a standard CSV into their required ARFF file, we wrote a 
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program to write the ARFF file itself.  This way we could more accurately dictate the 

key aspects needed within the ARFF file.  The reasoning behind this is that due to all 

the types of data we are using and the many types of binning available to the 

numeric types, we needed to be able to easily change between them without 

worrying about the conversion.   

 Once we were able to get all the data into data structures that allowed us to 

pick and choose any combination of data aspects, we needed a way to choose key 

combinations.  At first there was nothing to indicate which combination of features 

would give us the most accurate evaluation.  To combat this uncertainty, we created 

a way to iterate through all the different combinations.  At first we reduced the 

number of elements to choose from down to 17.  These included percentage of 

nouns, percentage of verbs, percentage of noun phrases, average verb phrases per 

100 words, and many others.  To be able to iterate through all 216 * 17 possible 

combinations (16 possible inputs and one output) we wrote a multiple-part program.  

This process took every possible permutation, created the ARFF file for each 

combination, fed it into J48, and retrieved the accuracy rating.  Since the original 

search space was huge, the reasoning behind this was to guide J48 away from local 

maxima in the search space. 

 To iterate through each combination, a multi-phase function was created.  It 

loops down from the total number of each grouping possible computed by the 

formula:  

2(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠−1) − 1   
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In our first attempt at using this process there were 17 columns or data elements so 

we had 2(17-1) -1 or 65,535 possible combinations.  Starting at 65,535 we sent each 

number, down to 1, to a function that took this number and figured out its bit field and 

returned a list corresponding to the element numbers to be added for this iteration.  

For example 65,535 would correspond to the bit field of  1111 1111 1111 1111, 

which in this case meant that all data elements were to be added to this ARFF file for 

WEKA processing.  The next number sent, 65,534, would correspond to 1111 1111 

1111 1110, which would correspond to sending all but the 16th element for this 

iteration.   

 One should notice that with the previous examples, there are technically only 

16 columns when in fact we are using 17.  This is because one column is considered 

the output or the column that WEKA will attempt to guess.  Due to this fact, the output 

column is not included in these permutations.  To work with this issue, another 

function is needed to modify the columns so that this permutation works even when 

the ‘output column’ is in the middle of the list.  This separate function takes the 

created bit field and moves the current columns to correspond to the needed 

columns.  For example if we were using column 13, after the bit field is computed, it 

is sent to a function to move all columns from column 13 up one.  This will allow the 

functions following to access the correct data element.   

 For most of the experiments, there are many more elements then just 17 that 

we could use for inputs and output in WEKA format.  Initially we could have used 

over 125 separate entities.  The physics and biology experiments had data points 
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that were unique to that particular experiment.  Due to this, we implemented a user 

interface that would only display the features pertaining to the immediate experiment.   

Figures 12 and 13 show the Selection Screen-shots.  Figure 12 shows the physics 

data set, and Figure 13 displays the biology data set.  These screens allowed us to 

choose specifically any features we hypothesized would give an accurate result. 

 

 

Figure 12:  WEKA Selection Screen-Shot - Physics Data 
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Figure 13:  WEKA Selection Screen Shot - Biology Data 

 

 Originally we ran the initial entire set of 217 elements, as we had narrowed 

down our choices to those specific 17 features.  Since that time we have added many 

more elements and even removed a few.  To allow us to be able to pick and choose 

the inputs and output we needed, there exists the option to choose either a single run 

or an option to run a set of any number of inputs with all the combinations of those 

inputs to a single output.  This gave us the freedom to run any number of 

experiments for either physics or biology.  If we needed to look at a specific run or to 

see the actual tree J48 created, we just had to run the GUI version of WEKA.  

 



 
 

CHAPTER 6 

RESULTS 

 For each of the physics and biology experiments we attempted to answer a 

number of questions which addressed linguistic complexity and student learning.  For 

each research trial we attempted to answer domain specific questions and general 

questions that would be addressed in both physics and biology.   

 

Physics Results 

 The physics experiments were geared towards answering questions that 

involved how students’ learned through the ITSPOKE experiment.  Our attempts to 

answer some of these questions involved both the statistical two-tailed paired t-Test 

and/or the C4.5 Algorithm implemented by WEKA.  The following section details the 

questions and the results of these questions.  

 

J48 Decision Tree Results 

Does Linguistic Complexity Determine Learning? 

 Originally we used WEKA to dictate the pertinent input fields by giving it all of 

the 16 fields at once with post-test score as its output.  This gave J48 the assignment 
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of pruning the decision tree down to what is believed to be the most accurate fields.  

Table 10 shows the results of this experiment using a median split.  

 

Table 10:  J48 Directed Accuracy 

Input Features Output Accuracy 
Experiment Type    Essay Locale   
Average Words/Sentence;   Average Tree Height 
Percent SBARs      Percent Noun Phrases 

Percent Verb Phrases  Percent Adjective Phrases 
Percent Adverb Phrases  Percent Nouns  

Percent Verbs   Percent Prepositions 

Post Test Score 66.12% 

 
 
 
 .  Since it was only 66% accurate, we wondered if a hill climbing issue was 

preventing J48 from finding a better solution.  In a hill climbing problem, the machine 

learning algorithm finds a ‘peak’ or high accuracy and without any more guidance 

‘believes’ that it has found the highest peak.  To circumvent this possible problem, we 

fed all seventeen fields into the custom permutation algorithm to allow J48 to be fed 

every possible combination of features.  Though not a large increase, the 

permutation function did find a slightly higher accuracy and kappa rating.  The 

function found a solution that used a few less input features which is shown in 

Table 11 with the accuracy of the output by median split.   
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Table 11:  J48 Guided Accuracy 

Input Features Output Accuracy 
Experiment Type    Average Words/Sentence   
Average Tree Height   Percent SBARs 
Percent Noun Phrases  Percent Verb Phrases  
Percent Adjective Phrases  Percent Adverb Phrases 
Percent Nouns   Percent Verbs 

Post Test Score 68.82% 

 

  

Does Essay Locale (First vs Last) Determine Essay Complexity 

 We wanted to know whether essay locale determined essay complexity. To 

study this question, we asked to what extent initial or final essay locale could be used 

to predict whether a given measure of essay complexity was greater or less than the 

median value. Table 12 shows the results for this experiment with the output 

separated by the median split. 

 

Table 12:  Results for Physics Essay Locale 

Input  Output  Accuracy  
Essay locale  Avg tree height  55.53%  

Essay locale  Avg sentence length  53.22%  

Essay locale  Avg SBAR count  53.59%  

 

 

From Table 12 above one can see that using essay locale as an input and these 

three averages as three separate outputs, the accuracy for this question does not 

appear significant. 
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Does Experiment Type Determine Complexity 

 We wanted know whether we could identify any of the causes of complexity. 

We tested all 217 combinations of the 17 basic features. In Table 13 we show sample 

results from this experiment. As the reader can see, we attempt to see whether 

experiment type or essay locale can predict whether the percent of SBARs is greater 

or less than the median value.  The percentages of accuracy are very similar to the 

previous experiments.  

 

Table 13:  Results for Physics Experiment Type 

Inputs  Output  Accuracy  

Experiment type  Percent of SBARs  57.60 %  

Essay locale  Percent of SBARs  53.59 %  

 

 

 

Is There a Relationship between Linguistic Features and Physics Knowledge? 

 
 Our previous results were at the essay level.  Here, we wanted to look for 

relationships at the student level. In particular, we were looking for relationships 

between measures of complexity at the student level and measures of knowledge or 

learning, such as pretest score, posttest score, and learning gain.  

 We computed the student average sentence length for initial essays by 

dividing the total number of words written by the student in any of their initial essays 

by the total number of sentences in those essays, and similarly for their final essays. 
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We computed student average SBAR percent the same way, dividing total SBARs in 

any of the student’s initial (or final) essays by the number of words in those essays.   

As Table 14 displays, being able to determine learning based on complexity from J48 

is at most 56% accurate.   

 

Table 14:  Results for Linguistic Complexity to Educational Data 

Input  Output  Accuracy  

Student average sentence 

length computed over all 

initial essays  

Pretest score  50.40%  

Posttest score  51.01%  

Learning gain  50.20%  

Input  Output  Accuracy  

Student average SBAR % 

computed over all initial 

essays  

Pretest score  50.40%  

Posttest score  53.44%  

Learning gain  50.20%  

Student average sentence 

length computed over all 

final essays  

Output  Accuracy  

Posttest score  52.41%  

Learning gain  56.29%  

Student average SBAR % 

computed over all final 

essays 

Output  Accuracy  

Posttest score  53.43%  

Learning gain  50.05%  

 

 

 Table 15 shows the results for the J48 attempting to find the relationship 

between educational data of physics and two of the complexity markers, average tree 

height and percentage of subordinate clauses (SBARs).  As shown, there is no 

relationship.   
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Table 15:  Results for Educational Data to Linguistics 
 

Input Output Accuracy 
Post-test Score Average Tree Height 55.90% 

Post-test Score Percent of SBARs 52.59% 

Average Tree Height & 
Percent of SBARs 

Post-test Score 53.42% 

 
 
 

Two-Tailed Paired T-Test 

Is There a Relationship Between Initial and Final Essays 

 One of our earlier questions asked whether there was a significant difference 

in sentence complexity between first and last essays for the same problem.  

 We first used a two-tailed paired t-test to determine whether final student 

essays were significantly longer than the corresponding initial essays. After deleting 

problems where students only wrote one essay, there were 482 essays.  The 

average lengths were significantly different, averaging 53 words for the initial essays 

and 129 for the final essays. The value t = -22.38 (df = 481) is significant at the 

p < .001 level.  

 Next we used the two-tailed paired t-test to determine whether final student 

essays contained a larger percentage of SBARs than the corresponding initial 

essays. We obtained t = 2.97 (df = 481), which is significant at the p  < .001 level. 

Thus students did write more complex essays after tutoring for each problem.  

 Although we did not run this experiment for all the measures of sentence 

complexity, in other experiments the three measures performed equivalently. 
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Biology Results 

 The biology experiment was a two-fold experiment that took what we were 

attempting to discover in the physics experiment, add additional features, and answer 

additional questions.  Overall the results were mixed, vectored towards the idea that 

most of our data exhibited some type of relationship, but not one that could be easily 

identified.  The following headings ask the original questions we attempted to answer 

and what we found in our journey to answer the question.   

 
Can Basic Linguistic Complexity be Used for Author Identification? 

 There have been many attempts to accomplish author identification in years 

past, though as stated previously, a vast majority of them use individual words, 

clusters of words, or some other form of word usage, for example using the author’s 

use of ‘while’ versus ‘whilst’ in the crusade to prove who authored the Federalist 

Papers.  With the use of computers and machine learning we can expand to more 

complicated ways of researching how someone speaks or writes.  In our experiments 

we attempted to use lexical elements such as the many different parts of speech and 

the ways in which people structure their sentences to point to the author of a speech 

or essay.  By using this format we found some success in our author identification 

process.  With the help of the iteration technique described in the methodology 

section we were able to run over 120,000 separate tests at a time. 
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Answer Using J48 

  Table 16 shows the results of the top scoring runs.  The input features used 

are shown along with the accuracy percentage and the kappa statistic for that run.  

Figure 14 and Figure 15 show the decisions trees that J48 created for the two most 

accurate feature sets. 

 

Table 16:  Accuracy of Identification of Tutors 

List of Input Features Accuracy Kappa 

Avg. Adverb Phrases Avg. Questions 87.5% 0.74 

Percent of Noun Phrases   Percent of  Conjunction  Phrases 
Percent of  Verb Phrases Percent of Verbs   
Percent of Adjectives    Percent of Pronouns 

85.0% 0.69 

Percent of Noun Phrases   Percent of  Verb Phrases  
Percent of Verbs   Percent of Conjunction Phrases 

82.5% 0.65 

Avg. Questions  Avg. Adverbs  Avg. Pronouns    
Log. Interjections   

80.0% 0.59 

Avg. SBARs   Avg. Questions  Avg. Adjectives    
Log. Interjections 

80.0% 0.58 

Avg. Questions Avg. Verbs  Avg. Adjective Phrases 
Avg. Pronouns Log Interjections Avg. Prepositional Phrases 

77.5% 0.53 
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Figure 14:  J48's Decision Tree – 2nd Best Run – 85% 

 

 

 

Figure 15:  J48 Decision Tree - Best run – 87.5% 

 

 In some cases we were able accurately predict the correct tutor over 80% of 

the time.  In the two most accurate runs the most prevalent features that J48 was 
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inclined to utilize for inputs were:  average number of adverb phrases, average 

number of questions, percentage of noun phrases, and percentage of verb phrases.  

 
Answer Using Clustering 

 The accuracy of clustering is more difficult to determine due to the fact that 

clustering gives a subjective output (Japkowiczs & Shaw, 2011).  The following 

figures show how a visualization of the clusters created by running K-Means with the 

same dataset as our top J48 run.  Many times in clustering, there are overlaps in the 

clusters because there are always some outliers.  That is, some points that are part 

of one cluster end up in another cluster usually due to an instance outside the norm 

for that cluster.  Figure 16 shows the textual output of the K-Means execution for 

using the top two features from J48, percentage of noun phrase and percentage of 

prepositions, to identify the tutor.  Included in the textual output are the standard 

deviations and means that the algorithm used to divide the clusters. 
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Figure 16:  K-Means Text Output:  Percent of Noun Phrases; 

 Percent of Prepositions; Tutor Name   

 

 For this example, the K-Means algorithm placed into cluster 1 one all noun 

phrase percentages around 24 and all percentages of prepositions around 8, which 

were identified as Dr. Michael.  Correspondingly it placed any percentages of noun 

phrases around 26 and percentages of prepositions around 9, which it identified with 

Dr. Rovick, into the second cluster.  This signifies that it found that those sets of data 

belonged in the same cluster.  Strictly speaking it found a reasonable association 

between the specified ranges of noun phrases, the specified ranges of preposition 

percentages, and the specific tutors.  Figures 17 and Figure 18 show the visualization 

of the K-Means clustering.   The circles represent the clusters, with the x’s signifying 

Dr. Michael and the circles indicating Dr. Rovick.    



66 
 

 

 

Figure 17:  K-Means Cluster:  X-Axis: Percent of Noun Phrases; 
Y-Axis: Percent of  Prepositions;  Shape: Tutors 
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Figure 18:  K-Means Cluster:  X-Axis: Percent of Noun Phrases; 
Y-Axis: Percent of SBARs;  Shape: Tutors 

 

 The two previous examples clearly show that there are relationships between 

these features and the specified tutor.  As displayed in the Figure 18, there will 

usually be outlying data points outside the designated clusters.  Clustering allows for 

these without majorly affecting a cluster group.  In this case, this can easily be 

explained since no one always writes in the exact same format every time. 
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Which Linguistic Features are Possibly Better at Identification? 

 Since we were able to relatively accurately show that some linguistic features 

can be used to help author identification, we wanted to decipher which elements 

were the most advantageous.  The features that were the most effective were 

features that were more likely to being included as input elements in the higher 

scoring runs in J48, and those that showed better cluster groups in K-Means.  The 

most prevalent features from the J48 procedure were average adverb phrases per 

100 sentences and average questions per 100 sentences, as they provided the most 

accurate tree.  However, though this was the most accurate there were other features 

that continued to be present in many other J48 operations, especially the higher 

accuracy results.   These features were percentage of noun phrases, percentage of 

verb phrases, average subordinate clauses, average words per sentence and the 

Flesch Reading Test score, and even to a lesser degree the other two reading 

indices.   
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Do more successful students . . .  

 Use More Domain Words? 

 Table 17 shows the relationship between students’ use of domain words and 

their biology grade.  As the reader can see there is no apparent relationship. 

 

Table 17:  J48 Accuracy:  Student Domain Word & Biology Grade 

Input  Output  Accuracy  
Percentage Domain Words  Biology Grade 22.86% 

Average Domain Words  Biology Grade  25.71% 

Log2 Domain Words Biology Grade 22.86% 

Biology Grade Percentage Domain Words 45.71% 

Biology Grade Average Domain Words 51.53% 

Biology Grade Log2 Domain Words 51.53% 

 

 

Have Longer Sentences?  

 Table 18 shows the relationship between students’ average sentence length 

and their biology grade.  There is no apparent relationship. 

 

Table 18:  J48 Accuracy:  Student Sentence Length & Biology Grade 

Input  Output  Accuracy  
Average Words Per Sentence Biology Grade 22.86% 

Log Words Per Sentence Biology Grade  25.71% 

Biology Grade Average Words Per Sentence 42.86% 

Biology Grade Log Words Per Sentence 42.86% 
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Have More Complex Sentences?  

 Table 19 shows the relationship between students’ usage of subordinate 

clauses (SBARs) and their biology grade.  There is no apparent relationship. 

 

Table 19:  J48 Accuracy:  Student SBARs & Biology Grade 

Input  Output  Accuracy  
Percentage SBARs  Biology Grade 31.43% 

Average SBARs  Biology Grade  34.29% 

Log2 SBARs Biology Grade 22.86% 

Biology Grade Percentage SBARs  51.43% 

Biology Grade Average SBARs  51.43% 

Biology Grade Log2 SBARs 45.71%  

 

Have Higher Tree Heights? 

 Table 20 shows the relationship between students’ average sentence tree 

heights and their biology grade.  There is no apparent relationship. 

 

Table 20:  J48 Accuracy:  Student Tree Height & Biology Grade 

Input  Output  Accuracy  
Average Tree Heights Biology Grade 17.14% 

Percent Tree Heights Per Wd Biology Grade  28.57% 

Biology Grade Average Tree Heights 45.71% 

Biology Grade Percent Tree Heights Per Wd 51.43% 

 



71 
 

Utilize More Words? 

 Table 21 shows the relationship between students’ usage of unique words and 

their biology grade.  There is no apparent relationship. 

 

Table 21:  J48 Accuracy:  Student Unique Word & Biology Grade 

Input  Output  Accuracy  
Percentage Unique Words Biology Grade 42.86% 

Average Unique Words  Biology Grade  25.71% 

Log2 Unique Words Biology Grade 17.14% 

Biology Grade Percentage Unique Words 54.29% 

Biology Grade Average Unique Words  51.43% 

Biology Grade Log2 Unique Words 48.57% 

 
 
Ask More Questions? 

 Table 22 shows the relationship between students’ usage of questions and 

their biology grade.  There is no apparent relationship. 

 

Table 22:  J48 Accuracy:  Student Questions & Biology Grade 

 Input  Output  Accuracy  
Percentage Questions Biology Grade 25.71% 

Average Questions  Biology Grade  17.14% 

Log2 Question Biology Grade 20.00% 

Biology Grade Percentage Questions 60.00% 

Biology Grade Average Questions  51.43% 

Biology Grade Log2 Question 51.43% 
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Do Teachers That Pose More Questions Elicit 
More Understanding From Their Students? 

 
 
 Table 23 shows the relationship between the teachers’ usage of questions and 

the students’ biology grade.  There is no apparent relationship. 

 

Table 23:  J48 Accuracy:  Teacher Questions & Student Biology Grade 

 Input  Output  Accuracy  
Percentage Questions Biology Grade 11.43% 

Average Questions  Biology Grade  11.43% 

Log2 Question Biology Grade 25.10% 

Biology Grade Percentage Questions 42.86% 

Biology Grade Average Questions  45.71% 

Biology Grade Log2 Question 40.00% 

 

 
Is There a Relationship Between a Teacher’s Linguistics 

And Their Teaching Effectiveness? 
 

 
 Table 24 shows the relationship between the teachers’ usage of subordinate 

clauses (SBARs) and the students’ biology grade.  There is no apparent relationship. 

 

Table 24:  J48 Accuracy:  Teacher SBARs & Student Biology Grade 

 Input  Output  Accuracy  
T - Percentage SBARs Biology Grade 17.14% 

T - Average SBARs  Biology Grade  25.71% 

T - Log2 SBARs Biology Grade 28.57% 

Biology Grade T - Percentage SBARs 40.00% 

Biology Grade T - Average SBARs  48.57% 

Biology Grade T - Log2 SBARs 48.84% 
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Is There a Measurable Difference Between Tutors?  

  Seeing as we were able to reasonably predict the correct author in our 

author identification experiment, it can clearly say that there are measurable 

differences between the two tutors.  As it is shown in the J48 decision trees 

(Figure 14 and Figure 15) by the greater than 80% accuracy rating and the 

70% kappa statistic, and in the distinct groupings in the K-Means 

visualizations (Figure 17 and Figure 18), Dr. Michael and Dr. Rovick had some 

distinct ways of communicating with their students. 

 
Combined Experimental Results 

Do Better Students Use More Complicated Data Structures? 

 From the datasets we have utilized during these experiments the answer to 

this question is undetermined.  Though many of the accuracies were around the 

baseline of 50%, more research in this matter should be completed.  Different 

algorithms may shed more light on these relationships.   

 
Does Linguistic Complexity Determine Learning? 

 This was one of the major questions we were attempting to answer throughout 

these experiments.  The idea that there is a relationship between learning and 

linguistic complexity could provide a better understanding of student learning.   
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 Throughout the duration of these experiments, there was always a suggestion 

of a connection between linguistic complexity and understanding, but unfortunately 

there were no definitive relationships found in any of the machine learning 

experiments. 

 In the physics section of our experiments, the best relationship found between 

any type of known linguistic complexity and educational markers was barely better 

than a coin flip.  This was shown with the J48 accuracy ratings between students’ 

linguistic complexity (using SBARs) and their grades, scarcely reaching 60%. 

 



 
 

CHAPTER 7 

FINAL THOUGHTS 

Conclusion 

 In this thesis we delved into the notion of author identification utilizing linguistic 

measures exclusively.  We also investigated whether relationships could be found 

between sentence complexity and student learning.  We then attempted to combine 

these two notions into searching for aspects of teaching effectiveness.   

 There appeared to be only weak correlations between writing complexity and 

student learning ability.   As shown in the results of the physics chapter, showing 

specific relationships from the J48 output was barely above a baseline at best.  The 

fact that we could not find a displayable relationship does not destroy the hypothesis 

that there is not an underlying connection.  As proven with the results from the 

statistical analysis, there are some fundamental associations at work between these 

features.  At this time we cannot indicate what the relationships are, but we know 

there are relations. 

For author identification, we were able to execute a vast number of iterations, 

numbering around one million, by using code developed in Python and interfacing 

with WEKA directly.  In terms of J48 accuracy percentages, most of these iterations 

only resulted in decent, but not Earth shattering scores.  Many scores, due to poo



76 
 

combinations, were even below the baseline of 50%.  There were however, a few 

excellent outcomes from a select group of features that indicate that doing author 

identification via sentence structures and linguistic complexity is plausible.  Added 

into these results are the undeniable associations shown in the K-Means clustering.  

K-Means produced a handful of great cluster groups using multiple aspects of 

linguistic complexity.  With the results of these two machine learning algorithms, we 

believe that linguistic complexity, as used in a dialogue setting, is not only plausible, 

but extremely viable.  

One of the main topics of this thesis has been the value of employing machine 

learning techniques.  Throughout the entirety of these experiments, much of what we 

accomplished would not have been possible without the use of computer processors 

and more specifically machine learning algorithms.  One of the final inquiries in this 

thesis was if machine learning algorithms or techniques would be advantageous in 

answering the hypotheses proposed in this thesis.  The results gained, both positive 

and not so positive, would not have been achievable without the use of machine 

learning.  These techniques have a great value that could continue to assist 

researchers in developing answers to these complex issues of author identification, 

student learning, and effective teaching techniques. 
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Future Work 

 This thesis identifies many research opportunities in multiple areas.  Since we 

were able to find some relationships such as with author identification, more research 

into this area would be beneficial.  Gathering more data from dialogues from the 

same discipline, the medical education field, would allow some of these statistics to 

become even more precise.  Because there are such an overwhelming number of 

possible combinations of features for use in these experiments, obviously it would be 

problematic to attempt every single one of them.   A continuation of this would be to 

attempt to try all of the 2162 combinations and narrow down the selection pool to a 

handful of more practical combinations.  Due to there being such a tremendous 

number to sift through, the use of a high-powered multi-processing cluster would be 

necessary for this type of activity. 

 Not only would collecting additional data from the same pool be 

advantageous, finding correlations with other disciplines would also beneficial.  

Adding in dialogues or written essays from computer science and other fields could 

show how these disciplines could be interconnected in terms of learning.  

 In general, more data would be very valuable in both the author identification 

process and the journey to find relationships between teaching techniques and 

learning.   In the case of the physics data, there were many different written files, but 

each file was limited.  In the case of the biology the opposite was true, there were 

fewer individual files, but much more in terms of content.  More variety in size and 

quantity would be very helpful in advancing these techniques.  
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