
Linked Queue Push Operation

Assume that we have the following lines of code:

 myqueue queue1; // Line 1

queue1.push(5); // Line 2

queue1.push(8); // Line 3

queue1.push(3); // Line 4

The following sequence of diagrams shows how the myqueue object and its associated dynamic

storage changes as these lines are executed.

Figure 1: The new, empty myqueue object queue1 created in Line 1 of the code above. The q_front and q_back

pointers are nullptr, while q_size is 0.

Figure 2a: The call to push() in Line 2 causes a new list Node to be allocated using the temporary pointer

new_node. The node's value field is initialized to the value passed to push(), while its next field is initialized to

nullptr.

Figure 2b: Since the queue is currently empty, the pointer q_front is set to point at new_node. Then q_back is set

to point at new_node and the q_size is incremented to 1.

q_front

q_size

X

0

queue1

X q_back

q_front

q_size

X

0

queue1

X q_back

5 X

new_node

q_front

q_size

1

queue1

 q_back

5 X

new_node

Figure 2c: When the push() method ends, the local variable new_node ceases to exist.

Figure 3a: The call to push() in Line 3 causes a new list Node to be allocated using the temporary pointer

new_node. The node's value field is initialized to the value passed to push(), while its next field is initialized to

nullptr.

Figure 3b: Since the queue is not empty, the pointer q_back->next is set to point at new_node. Then q_back is set

to point at new_node and the q_size is incremented to 2.

Figure 3c: When the push() method ends, the local variable new_node ceases to exist.

q_front

q_size

1

queue1

 q_back

5 X

q_front

q_size

1

queue1

 q_back

5 X X 8

new_node

q_front

q_size

2

queue1

 q_back

5 X 8

new_node

q_front

q_size

2

queue1

 q_back

5 X 8

Figure 4a: The call to push() in Line 4 causes a new list Node to be allocated using the temporary pointer

new_node. The node's value field is initialized to the value passed to push(), while its next field is initialized to

nullptr.

Figure 4b: Since the queue is not empty, the pointer q_back->next is set to point at new_node. Then q_back is set

to point at new_node and the q_size is incremented to 3.

Figure 4c: When the push() method ends, the local variable new_node ceases to exist.

Linked Queue Pop Operation

Assume that we then add the following lines of code after the code listed above:

queue1.pop(); // Line 5

queue1.pop(); // Line 6

queue1.pop(); // Line 7

The following sequence of diagrams shows how the myqueue object and its associated dynamic

storage changes as these lines are executed.

q_front

q_size

2

queue1

 q_back

5 X 8

new_node

3 X

q_front

q_size

3

queue1

 q_back

5 8

new_node

3 X

q_front

q_size

3

queue1

 q_back

5 8 3 X

Figure 5a: The call to pop() in Line 5 creates the temporary pointer del_node and sets it to the value of q_front.

Figure 5b: The pointer q_front is set to q_front->next. It now points to the 2nd node in the list. q_front is not

nullptr, so q_back is not changed.

Figure 5c: The node pointed to by del_node is deleted and q_size is decremented to 2.

q_front

q_size

3

queue1

 q_back

5 8 3 X

del_node

q_front

q_size

3

queue1

 q_back

5

 8 3 X

del_node

q_front

q_size

2

queue1

 q_back

5

 8 3 X

del_node

Figure 5d: When the pop() method ends, the local variable del_node ceases to exist.

Figure 6a: The call to pop() in Line 6 creates the temporary pointer del_node and sets it to the value of q_front.

Figure 6b: The pointer q_front is set to q_front->next. It now points to the 2nd node in the list. q_front is not

nullptr, so q_back is not changed.

q_front

q_size

2

queue1

 q_back

8 X 3

q_front

q_size

3

queue1

 q_back

8 3 X

del_node

q_front

q_size

3

queue1

 q_back

8

X 3

del_node

Figure 6c: The node pointed to by del_node is deleted and q_size is decremented to 1.

Figure 6d: When the pop() method ends, the local variable del_node ceases to exist.

Figure 7a: The call to pop() in Line 7 creates the temporary pointer del_node and sets it to the value of q_front.

Figure 7b: The pointer q_front is set to q_front->next. It is now nullptr. Since q_front is nullptr, q_back

is also set to nullptr.

q_front

q_size

1

queue1

 q_back

8

X 3

del_node

q_front

q_size

1

queue1

 q_back

3 X

q_front

q_size

1

queue1

 q_back

3 X

del_node

q_front

q_size

X

1

queue1

X q_back

3 X

del_node

Figure 7c: The node pointed to by del_node is deleted and q_size is decremented to 0.

Figure 7d: When the pop() method ends, the local variable del_node ceases to exist. The queue is now empty.

q_front

q_size

X

0

queue1

X q_back

3 X

del_node

q_front

q_size

X

0

queue1

X q_back

