
Array-Based Queue Push Operation 
 
Assume that we have the following lines of code: 
 

myqueue queue1;     // Line 1 

 

queue1.push(5);     // Line 2 

queue1.push(8);     // Line 3 

queue1.push(3);     // Line 4 

queue1.push(6);     // Line 5 

 
 
The following sequence of diagrams shows how the myqueue object and its associated dynamic 

storage changes as these lines are executed. 
 
 
Figure 1: The new, empty myqueue object queue1 created in Line 1 of the code above. The q_array pointer is 

nullptr, while q_size and q_capacity are both 0. q_front is 0 and q_back is equal to (q_capacity – 1) or 

-1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

q_array 

q_capacity 

q_size 

X 

0 

0 

queue1 

0 

-1 

q_front 

q_back 



Figure 2: The myqueue object following the execution of Line 2. Since q_size == q_capacity, the push() 

method will call the reserve() method to allocate a new dynamic array. Since the current q_capacity is 0, the 

capacity requested for the new array will be 1. The contents of the existing array (if any) are copied to the new array (in 
this case, there's nothing to copy). The q_capacity is updated to the capacity of the new array. The existing array is 

then deleted (in this case, there's nothing to delete) and the q_array pointer is set to point to the new array. q_back 

is incremented by 1 (from -1 to 0), then divided by the q_capacity of 1, and the remainder of 0 is assigned to 

q_back. Finally, the value to insert is stored in the array at subscript q_back (subscript 0) and then the q_size is 

incremented to 1. 
 

 
 
Figure 3: The myqueue object following the execution of Line 3. Since q_size == q_capacity, the push() 

method will call the reserve() method to allocate a new dynamic array. Since the current q_capacity is not 0, the 

capacity requested for the new array will be 2 (two times the current capacity of 1). The contents of the existing array 
are copied to the new array. The q_capacity is updated to the capacity of the new array. The existing array is then 

deleted and the q_array pointer is set to point to the new array. q_back is incremented by 1 (from 0 to 1), then 

divided by the q_capacity of 2, and the remainder of 1 is assigned to q_back. Finally, the value to insert is stored in 

the array at subscript q_back (subscript 1) and then the q_size is incremented to 2. 

 

 
 

 

 

 

 

 

q_array 

q_capacity 

q_size 

1 

1 

queue1 

0 

0 

q_front 

q_back 

5   

q_array 

q_capacity 

q_size 

2 

2 

queue1 

0 

1 

q_front 

q_back 

  5 8 



Figure 4: The myqueue object following the execution of Line 4. Since q_size == q_capacity, the push() 

method will call the reserve() method to allocate a new dynamic array. Since the current q_capacity is not 0, the 

capacity requested for the new array will be 4 (two times the current capacity of 2). The contents of the existing array 
are copied to the new array. The q_capacity is updated to the capacity of the new array. The existing array is then 

deleted and the q_array pointer is set to point to the new array. q_back is incremented by 1 (from 1 to 2), then 

divided by the q_capacity of 4, and the remainder of 2 is assigned to q_back. Finally, the value to insert is stored in 

the array at subscript q_back (subscript 2) and then the q_size is incremented to 3. 

 

 
 

 
Figure 5: The myqueue object following the execution of Line 5. Since q_size != q_capacity, the push() 

method does not call the reserve() method. q_back is incremented by 1 (from 2 to 3), then divided by the 

q_capacity of 4, and the remainder of 3 is assigned to q_back. Finally, the value to insert is stored in the array at 

subscript q_back (subscript 3) and then the q_size is incremented to 4. 

 

 
  

 

 

 

 
 
 
 

 

q_array 

q_capacity 

q_size 

4 

3 

queue1 

0 

2 

q_front 

q_back 

  5 8 3   

q_array 

q_capacity 

q_size 

4 

4 

queue1 

0 

3 

q_front 

q_back 

  5 8 3  6 



Array-Based Queue Pop Operation 
 

Assume that we then add the following lines of code after the code listed above: 
 

queue1.pop();       // Line 6 

queue1.pop();       // Line 7 

 
The following sequence of diagrams shows how the myqueue object and its associated dynamic 

storage changes as these lines are executed. 
 

 
Figure 6: The myqueue object following the execution of Line 6. q_front is incremented by 1 (from 0 to 1), then 

divided by the q_capacity of 4, and the remainder of 1 is assigned to q_front. The q_size is decremented to 3. 

That means that element 1 (the value 8) is now the front item in the queue, and element 0 (the value 5) is now outside 
the boundaries of the queue. Effectively, it has been removed from the queue even though the value is technically still 
present in the array.  
 

 
 
Figure 7: The myqueue object following the execution of Line 7. q_front is incremented by 1 (from 1 to 2), then 

divided by the q_capacity of 4, and the remainder of 2 is assigned to q_front. The q_size is decremented to 2. 

That means that element 2 (the value 3) is now the front item in the queue, and element 1 (the value 8) is now outside 
the boundaries of the queue. 
  

 

q_array 

q_capacity 

q_size 

4 

3 

queue1 

1 

3 

q_front 

q_back 

  5 8 3  6 

q_array 

q_capacity 

q_size 

4 

2 

queue1 

2 

3 

q_front 

q_back 

  5 3  6 8 



Note that the pop() method (or at least the version outlined in the notes) does not change the 

stack capacity. 
 
 

Wraparound on Array-Based Queue Push Operation 
 
Assume that we then add the following lines of code after the code listed above: 
 

queue1.push(4);       // Line 8 

queue1.push(7);       // Line 9 

 
The following sequence of diagrams shows how the myqueue object and its associated dynamic 

storage changes as these lines are executed. 
 
Figure 8: The myqueue object following the execution of Line 8. Since q_size != q_capacity, the push() 

method does not call the reserve() method. q_back is incremented by 1 (from 3 to 4), then divided by the 

q_capacity of 4, and the remainder of 0 is assigned to q_back. Thus, q_back has wrapped around to the 

beginning of the array. Finally, the value to insert is stored in the array at subscript q_back (subscript 0) and then the 

q_size is incremented to 3. 

 

The location in the array of the front item of the queue is now after the location in the array of the 
back item of the queue! 
 

q_array 

q_capacity 

q_size 

4 

3 

queue1 

2 

0 

q_front 

q_back 

  4 3  6 8 



 
It may help to visualize the queue array as a circle. Starting from the front element of the queue, 
we proceed counter-clockwise to the back element of the queue. The locations of the front and 
back elements of the queue within the array are relatively unimportant as long as the order of the 
elements in the queue is maintained. 
 

 
 
 
 
Figure 9: The myqueue object following the execution of Line 8. Since q_size != q_capacity, the push() 

method does not call the reserve() method. q_back is incremented by 1 (from 0 to 1), then divided by the 

q_capacity of 4, and the remainder of 1 is assigned to q_back. Finally, the value to insert is stored in the array at 

subscript q_back (subscript 1) and then the q_size is incremented to 4. 

 

q_array 

q_capacity 

q_size 

4 

3 

queue1 

2 

0 

q_front 

q_back 

  

Front of the queue Back of the queue 

4 3  6 8 

8 4 

6 3 

Front of the queue 

Back of the queue 

[1] [0] 

[2] [3] 



 
 
Visualized as a circle, the queue array now looks like this: 
 

 
 
 

Wraparound on Array-Based Queue Pop Operation 
 
We get the same kind of wraparound with the array-based queue’s pop() operation. 

 
Assume that we then add the following lines of code after the code listed above: 
 

queue1.pop();       // Line 10 

queue1.pop();       // Line 11 

 
The following sequence of diagrams shows how the myqueue object and its associated dynamic 

storage changes as these lines are executed. 
 
 
 
 

q_array 

q_capacity 

q_size 

4 

4 

queue1 

2 

1 

q_front 

q_back 

  4 3  6 7 

7 4 

6 3 

Front of the queue 

Back of the queue 

[1] [0] 

[2] [3] 



Figure 10: The myqueue object following the execution of Line 10. q_front is incremented by 1 (from 2 to 3), then 

divided by the q_capacity of 4, and the remainder of 3 is assigned to q_front. The q_size is decremented to 3. . 

That means that element 3 (the value 6) is now the front item in the queue, and element 2 (the value 3) is now outside 
the boundaries of the queue. 

 

 
Figure 11: The myqueue object following the execution of Line 11. q_front is incremented by 1 (from 3 to 4), then 

divided by the q_capacity of 4, and the remainder of 0 is assigned to q_front. Thus, q_front has wrapped 

around to the beginning of the array. The q_size is decremented to 2. That means that element 0 (the value 4) is now 

the front item in the queue, and element 3 (the value 6) is now outside the boundaries of the queue. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

q_array 

q_capacity 

q_size 

4 

3 

queue1 

3 

1 

q_front 

q_back 

  4  6 7 3 

q_array 

q_capacity 

q_size 

4 

2 

queue1 

0 

1 

q_front 

q_back 

  4 7 3 6 



Visualized as a circle, the queue array now looks like this: 
 

 
 
 

The reserve() Method 
 
Coding a reserve() method for the array-based queue is complicated by the fact that the circular 

nature of the queue array means that at any given time q_front may be less than q_back, 

equal to q_back, or greater than q_back. 

 
In the array-based stack, the stack elements always occupied array elements 0 to stkSize - 1. 

There is no guarantee that is the case with a circular array-based queue. 
 
For example, assume that the queue has a capacity of four and currently contains four items. The 
items in the queue are stored in descending order; the front item in the queue has the value 6, 
while the back item in the queue has the value 1. 
 
All four of the following diagrams represent valid arrangements for this queue: 
 

 
 

7 4 

6 3 

Front of the queue Back of the queue 

[1] [0] 

[2] [3] 

q_array 

q_capacity 

q_size 

4 

4 

queue1 

0 

3 

q_front 

q_back 

  6 2  1 4 



 
 

 
 

 
 
We can simplify the solution to this problem dramatically if we recognize that there is no need for 
the queue items to occupy the same elements in the new, larger array as they occupied in the 
original array. The q_front and q_back subscripts can be altered freely as long as the order of 

the elements in the queue remains the same. 

q_array 

q_capacity 

q_size 

4 

4 

queue1 

1 

0 

q_front 

q_back 

  1 4  2 6 

q_array 

q_capacity 

q_size 

4 

4 

queue1 

2 

1 

q_front 

q_back 

  2 6  4 1 

q_array 

q_capacity 

q_size 

4 

4 

queue1 

3 

2 

q_front 

q_back 

  4 1  6 2 



No matter what the original arrangement of the queue items was in the original array, we can place 
the front item at subscript 0 in the new larger array, the next item at subscript 1, the next item at 
subscript 2, etc. In this arrangement, the back item will always be located at the subscript 
(q_size - 1). 

 
 

 
 
This can be accomplished using a loop like the following: 
 
    int current = q_front; 

    for (size_t i = 0; i < q_size; i++) 

    { 

        temp_array[i] = q_array[current]; 

        current = (current + 1) % q_capacity; 

    } 

 

    q_front = 0; 

    q_back = q_size - 1; 

 
 
The q_capacity for the queue should not be updated to the new, larger capacity until after this 

loop has completed. 

q_array 

q_capacity 

q_size 

8 

4 

queue1 

0 

3 

q_front 

q_back 

  6 2  1 4         


